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Abstract. It is shown how the tensor gravity makes the electromagnetic mass splitting of 
pions finite without using any lagrangian model for the strong interaction. The mass 
splitting is sensitive to the spectral-function sum rules. A finite mass splitting does not 
lead to a unique modification of the second Weinberg sum rule. For the electromagnetic 
mass difference of pions good values are obtained by suitably chosen input data. 

1. Introduction 

After the first current algebra calculation of the electromagnetic mass splitting of 
pions (Das et a1 1967) the presence of a logarithmic divergence has been shown for 
on-shell external pions (Gerstein et al 1967) and also in the soft-pion limit with massive- 
pion contributions to  the spectral-function sum rules (Cook et a1 1968, Albright et a1 
1967). A finite and reasonable result could be found by modifying the second Weinberg 
sum rule (Cook et a1 1968). It is, however, not at all excluded that instead of the general- 
ization of Cook et al a slightly different sum rule is valid leading essentially to  the same 
mass ofA, and the logarithmic divergences do not cancel. This shows that a regularizing 
mechanism is necessary to get finite mass shifts even if complete cancellations occur in 
the last step. 

In a recent paper, starting from the proposal that gravity provides a natural regu- 
larization for the self-mass of the electron (Salam and Strathdee 1970a, Isham et al 
1971), we have found an acceptable value for the mass shift of pions in gravity-modified 
quantum electrodynamics (Farkas and Pocsik 1972) and similar conclusions have also 
been drawn in lagrangian models ofthe strong interaction (Duff er a1 1971, Huskins 1972). 
In the present paper we include the strong interaction in a model-independent way and 
express the mass shift of pions in terms of spectral functions and the gravitational 
constant. This is carried out in the soft-pion limit in 0 2. In 9 3 we show and examine 
the dependence of the mass shift on the spectral-function sum rule. In one particle 
approximation we find two kinds of solutions. One of them presents the result of 
Cook et al, here, the gravitational constant K gives only negligible contributions. The 
other solution corresponds to second Weinberg sum rules modified slightly differently 
from that of Cook et a1 and the gravitational terms give large contributions. Section 4 
contains a discussion of the results. 
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2. Derivation of the mass shift of pions 

We introduce gravity only into the electromagnetic vertices 

LZ? = - f i A , ( j ' + e Z 4 + 4 A p ) ) ,  g = det gap. (1) 

The violation of the electromagnetic gauge invariance caused by (1) is only of the 
order K (see also Farkas and Pocsik 1972), similarly the gravitational gauge dependence 
is not strong (see below). From (1) the electromagnetic self-energy of the pion (Umezawa 
1958, Das et al 1967) to e' order follows as 

where DJx) is the free-photon propagator in Fried-Yennie gauge, 

s~vps(x)  = (01 ~ ~ ~ " ~ ~ ~ J - g O ~ " ~ O ~ J ~ ~ 1 ~ ~  (3) 

means the graviton superpropagator and the rest contains the strong interaction. 
The second-order electromagnetic mass splitting of II+ and no is determined by the 
isovector part 

6p' = 2 m , ( 2 ~ ) ~  e' Re d4xD,,(x)SPvYPu(x) {(n+lT(V,3(x)V~(O))In+) -(n+ t) no),>, (4) 2i 

Vb is the isovector current. 

integrations together with current commutators, we get in the soft-pion limit 
Now, proceeding as Das et a1 we reduce both of the pions, using PCAC and partial 

s N v p " ( p )  denotes the Fourier transform of the graviton superpropagator (3), 

(vflp) = + - - - 
and A:,, -At,, is well known (Cook er al1968) 

with pv(pA) the transversal vector (axial vector) Lehmann weight and ApA the longitudinal 
axial vector weight function without the pion contribution. Equation (5) reproduces 
the result of Das et al for g,, = qlrv and it can be considered as the simplest extension 
including gravity. Instead of the free photon propagator, equation (5) is determined 
by the dressed propagator 
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The graviton superpropagator must be treated by the methods of nonpolynomial field 
theories. For g p v ( x )  we choose the localizable exponential parametrization (Lehmann 
and Pohlmeyer 1971) 

g p v ( x )  = (exp ich(x))”, 

(OI T ( h p v ( x ) h p e ( o ) ) l o )  = % q p p q v a  + q p a q v p  - 2 c ? p v ? p e ) D F ( x )  

K - ~  = 2 x lo’* GeV, (8) 

where h,,(x) is the free graviton field and 

(9) 

in the gauge fixed by the number c. An expression for (3) with (8) has been derived 
(Ashmore and Delbourgo 1971) in terms of two given entire functions G and H 

Spvpa(X) = qpvT,’PuG(K2D~) + (q”p?ve + qpu?j‘vP)H(K2D~) (10) 
and it follows that 

G(0) = 1 ,  H(0)  = 0 
G(u) = H(u) = u3I2 exp{2u(l -c)} ,  U 4 Co. 

Introduce the usual representation (Salam and Strathdee 1970b) for G and H with 
contour integrals and take their Fourier transforms, then we have the minimal repre- 
sentation 

S”’Pyp) = q’”qP“G(p) + (q”q’“q”“q’”)A(p) 

where - 1 < a < 0, g ( 0 )  = 1 ,  h(0) = 0 independently of e. It is easy to verify that the 
choice g ( z )  = 1 ,  h(z) = 0 gives exactly the superpropagator of the scalar gravity in the 
nonlocalizable parametrization gpv  = qpv( 1 + ~ h ) .  

Substituting (12) into (7) we get for the effective photon propagator the contour 
integral 

Put (6 )  and (13) into (5) and use the first Weinberg sum rule 

then hp takes the form 

Since the existence of the moments of the spectral functions is probably a strong assump- 
tion, we first integrate over m2. 
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Consider the sum rule 

/om dm2(pv(m2) -pA(m2) - ApA(m2)) = bm:F:. 

For b = 0, ApA = 0 (16) is the second Weinberg sum rule, b = 1 gives the modification 
of Cook et al. If b < cc the spectral integral exists in (15) and the contour integration 
can be carried out. For b = 0 , l  and b near 1, (16) holds almost equally. 

3. Evaluation of equation (15) 

In the p , A meson approximation 

pv = (?) 26(m2 - m:), pA = (2) ’6(m2 -mi ) ,  ApA = 0 (17) 

and (15) gives from the double pole at z = 0 

i ( 1 )  = ~ lndfcZ)! = 

One can verify that the contributions coming from the points z = 1,2, .  . . are negligible, 
being of the order ic2, ic’ In ic2, K~ ln2 ic2. To estimate g’(O)+h’(O) we first note that 
G ( H )  and g(h) are connected by a Mellin transformation, for c > 1 

Taking into account (1 1) (Ashmore and Delbourgo 1971), we get a slow In c type depend- 
ence from (19) to (18). For instance, for c 5 100, g‘+h’ contributes no more than 5 % 
to (18), the gravitational gauge dependence of (18) is negligible. 

In (18) f’ is replaced from the first Weinberg sum rule (14). To diminish the number 
of parameters we make use of the KSFR relation (Kawarabayashi and Suzuki 1966, 
Fayazuddin and Riazuddin 1966) 

in such a way 

The first term gives the old current algebra result (Das et a1 1967), the others represent 
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the regularizing effects. For m i  = 2m; and K + O(21) reproduces exactly the logarithmic 
divergence coming from the pion pole discussed recently (Cook et a/ 1968), otherwise the 
logarithmic factors are about - 90. 

From (14), (16), (17) and (20) it follows that 

which holds well with b - 0-2. Now, combine (22) and (21); special cases: (i) b = 0, 
the large pion term survives, i5p = -6 MeV. (ii) A good solution arises from b = 1 
(Cook et a /  1968), mA = 1070 MeV then m p  = 763 MeV, Sp = 4.6 MeV. In this case 
gravity is only an intermediate regulator, it is completely cancelled in the leading 
term (21). The same 6 p  follows without (20) from (14), (16), (17), 6 = 1, mA = 1070 MeV, 
F, = 94 MeV moving m p  between 760 MeV and 775 MeV. (iii) There exists a class of 
solutions where b # 1 and gravity contributes to the leading 6p. For instance, when 
b is near one, (21) gives about 4.6 MeV while the limit K + 0 diverges. Equation (21) 
gives in itself 6 p  = 8.2 MeV for m p  = 765 MeV, mA = 1070 MeV. 

4. Discussion 

In the present paper we have computed the electromagnetic mass difference of pions 
to second order in the electromagnetic interaction, taking into account the strong 
interaction in a lagrangian-independent way, and in the presence of tensor gravity. 
The localizable exponential parametrization approximates the nonlocalizable para- 
metrization mentioned after equation (12), since in both cases the mass shifts are the 
same as is seen from equation (18). The violation of the electromagnetic and gravitational 
gauge invariances is weak. 

The introduction of gravity modifies the photon propagator and makes 6 p  finite, 
even in the cases of 'wrong' sum rules where for K + 0 6 p  diverges. It turns out that 
6 p  is sensitive to m i  - 2m: and to the sum rules predicting this quantity. At present, 
the experimental value of Bp, 4.6 MeV, does not choose a sum rule as the only possible 
one. Good solutions for 6 p  arise from complete or partial cancellations of the gravita- 
tional terms. In this connection let us note the superconvergence assumption leading 
to (16). Write (6) as 

(23) A%) - A m  = rlvuF(P2) -PvP". 

The second Weinberg sum rule comes from p 2 F ( p 2 )  -, 0 at p 2  + CO while at  b = 1 
(16) is given by the superconvergence assumption p 4 G ( p 2 )  + 0 at p 2  -, ccj (Cook et a/ 
1968). On the same basis one may require 

which leads to (16) 

mzF;, dm2(p,(m2) - pA(m2) - ApA(m2))  = (2 -- - 
x + y  x + y  m;Fz 

X 

J o  
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